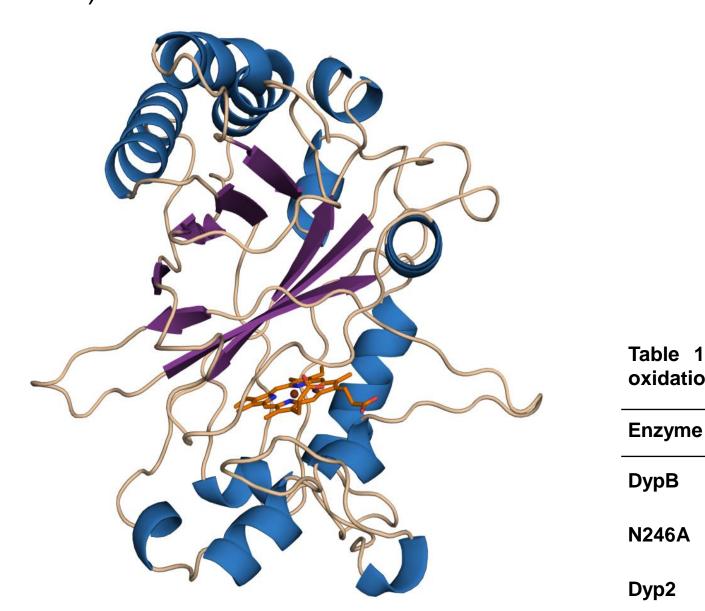

# **Discovery and engineering of lignin modifying enzymes**

Rahul Singh<sup>1</sup>, Cameron R. Strachan<sup>1,3</sup>, Karen Budwill<sup>4</sup>, Steven J. Hallam<sup>1,3</sup> and Lindsay D. Eltis<sup>1,2</sup> Departments of <sup>1</sup>Microbiology and Immunology, <sup>2</sup>Biochemistry and Molecular biology, The University of British Columbia, Vancouver, BC, V6T 1Z3 Canada, <sup>3</sup>MetaMixis, Vancouver, BC, Canada, <sup>4</sup>Environment and Carbon Management Division, Alberta Innovates-Technology Futures, Edmonton, AB, Canada



# **1. Introduction**

- Lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is among the best sources for renewable energy and biomaterials.<sup>1</sup>
- Soil microorganisms nature's biocatalyst transform cellulose, hemicellulose and lignin to derive energy and nutrients by using specific enzymes (Fig. 1).
- Microbial enzymes are frequently used as biocatalysts to transform cellulose and hemicellulose into fuels and value added products. However, a very few enzymes can catalyze lignin transformation.
- Thus, lignin, the most abundant aromatic biopolymer, is currently of little commercial value. Moreover, its recalcitrance contributes to the higher cost of biofuels.




# 3. Characterization and engineering of DypB from RHA1

- Belongs to the CDE superfamily of heme proteins (Fig. 3, left).
- The first bacterial DyP characterized as ligninase.
- Catalytic efficiency ~10-fold lower than plant-type peroxidases such as HRP.<sup>3</sup>
- Oxidizes Mn(II); catalytic efficiency ~5,000-fold lower than fungal MnP.<sup>3</sup>

# **Engineered DypB**

- Substitution of Asn246 with alanine improved the Mn(II)-oxidation rates of DypB ~80-fold<sup>5</sup> (Fig. 3, right; Table 1).
- The engineered variant transformed Kraft lignin and its fractions into mono-aryls such as: 2,6-dimethoxybenzene and 4-hydroxy-3,5-dimethoxybenzaldehyde (Figs. 4-6).5



# 5. Purification and preliminary characterization of CopA

- CopA was purified using affinity chromatography (Fig. 9, lane 4)
- Purified enzyme catalyzed the oxidation of ABTS and 2,6-DMP in the presence of added Cu(II) (Table 2).
- Interestingly, CopA also catalyzed the oxidation of 2,6-DMP in the absence of Cu(II) after a lag phase of  $\sim 10$  min (Fig 10).

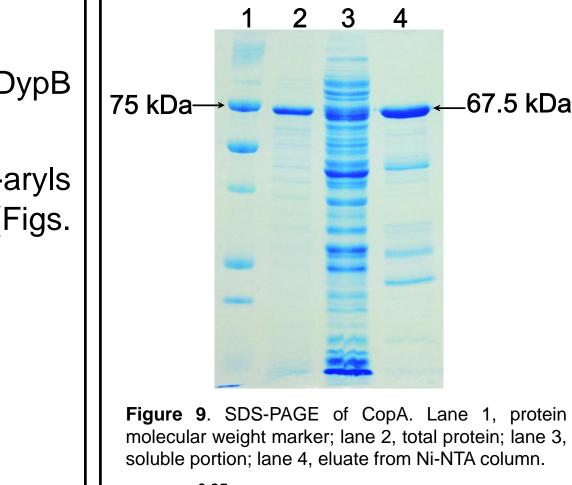



Table 2. Specific activity of CopA. The specific activity was determined by following the enzyme catalyzed oxidation of ABTS and 2,6-DMP. ABTS oxidation was monitored at 414 nm in 50 mM sodium acetate (pH 4.5), whereas oxidation of 2,6-DMP was monitored at 470 nm in 20 mM potassium phosphate (pH 8.0) The reactions were catalyzed by adding 30 nM purified CopA in the presence of 5 mM CuSO<sub>4</sub>. All the measurements were performed in triplicates.

| Substrate        | Specific activity (nmole min <sup>-1</sup> mg <sup>-1</sup> ) |
|------------------|---------------------------------------------------------------|
| ABTS (pH 4.5)    | 1000 ± 25                                                     |
| 2,6-DMP (pH 4.5) | 700 ± 40                                                      |
| 2,6-DMP (pH 8.0) | 125 ± 10                                                      |

Figure 9. SDS-PAGE of CopA. Lane 1, protein molecular weight marker; lane 2, total protein; lane 3, soluble portion: lane 4. eluate from Ni-NTA column

| 0.35 – |             |  |
|--------|-------------|--|
| 0.00   | With Cu(II) |  |
| 0.30   |             |  |
| 0.30 - |             |  |

0.12 - Without Cu(II)

#### Lignin bio-degradation:

• The best characterized lignin-modifying organisms are fungal.<sup>2</sup> These produce lignin and manganese peroxidases that depolymerize lignin (*i.e.*, ligninases). However, the challenges associated with fungal genetics and protein production have limited the commercial applications.

#### Lignin degradation by bacteria

- Several classes of "lignolytic or lignin modifying" bacteria have been identified.<sup>2</sup> However, bacterial ligninases and lignin catabolic pathways are poorly characterized.
- The best characterized bacterial ligninases are dye-decolorizing peroxidases (DyP): DypB of *Rhodococcus jostii* RHA1<sup>3</sup> and DyP2 of *Amycolatopsis* sp. 75iv2.<sup>4</sup>
- Both catalyze the  $H_2O_2$ -dependent oxidation of Mn(II), albeit less efficiently than fungal MnPs.<sup>4</sup>
- Moreover, the next generation DNA-sequencing and high-throughput screening methods provides a great opportunity to discover lignin transforming enzymes from characterized and uncharacterized bacteria.

**Overall aims: to characterize and engineer bacterial lignin-modifying systems.** 

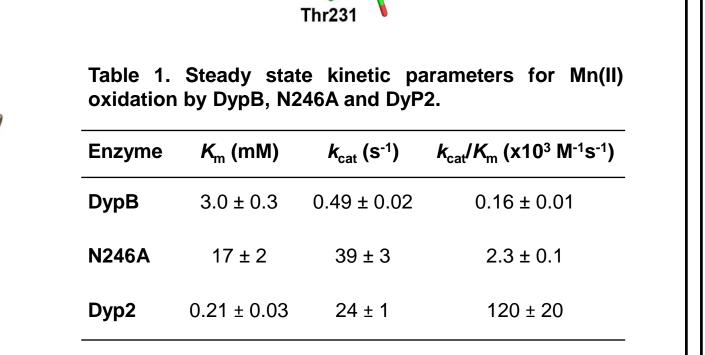
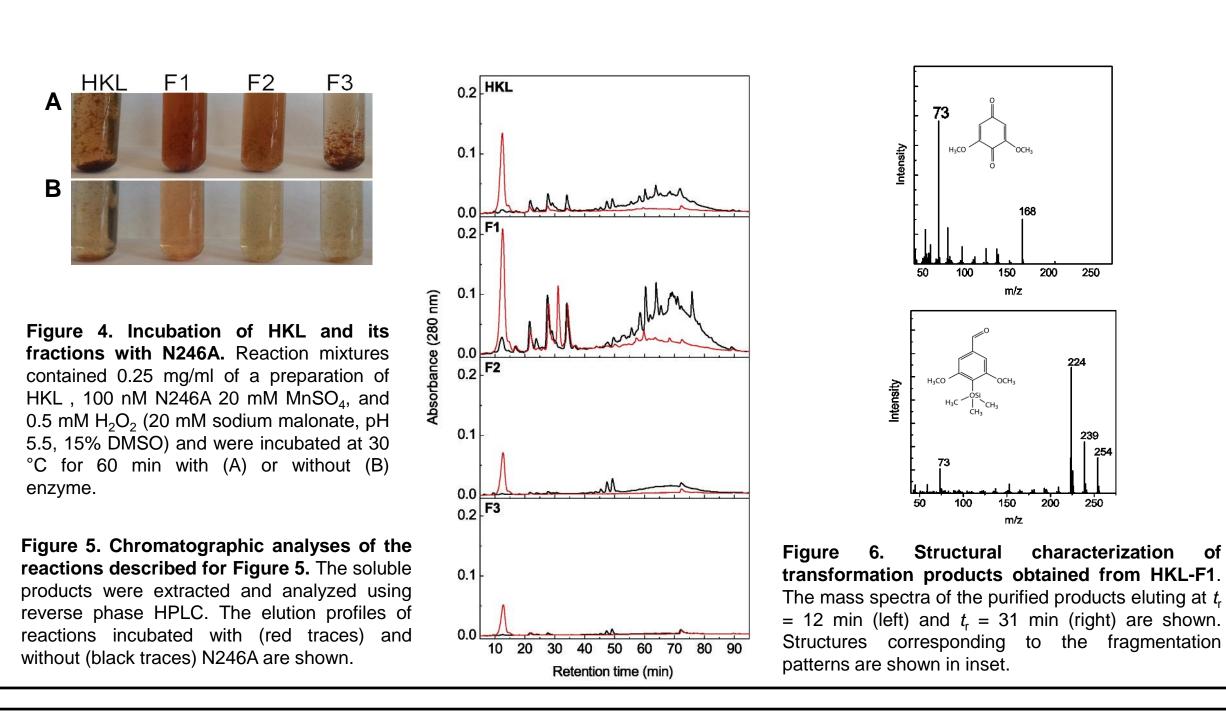




Figure 3. Crystal structure of DypB (left) and the Mn(II)-binding site of the N246A variant (right) (X-ray crystallography in collaboration with the Murphy lab).



4. Identification of a ligninolytic multi-copper oxidase

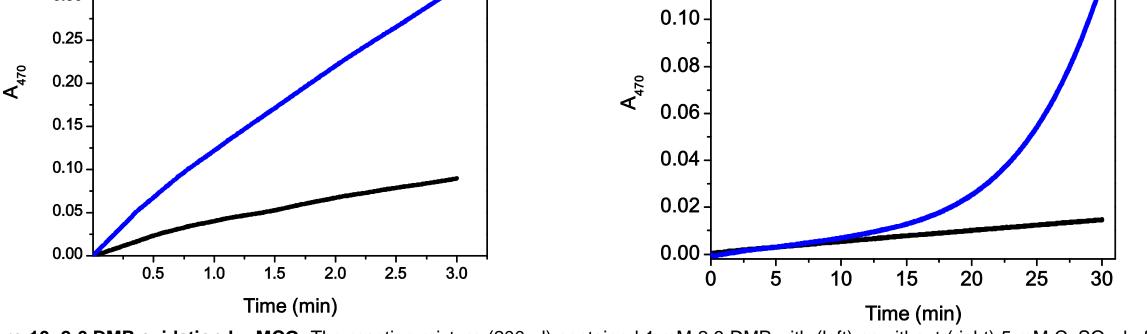
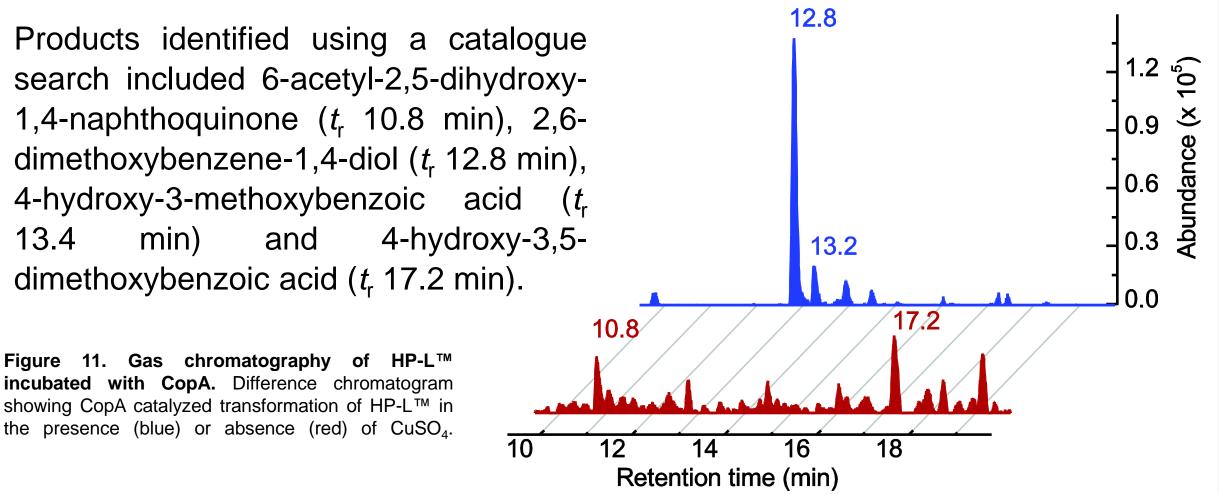



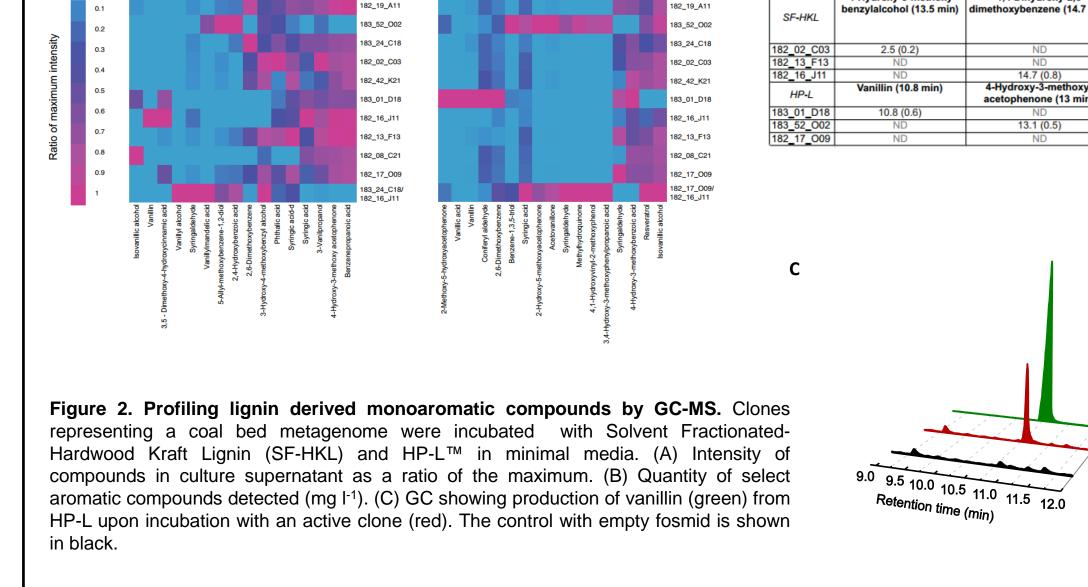

Figure 10. 2-6, DMP oxidation by MCO. The reaction mixture (200 µl) contained 1 mM 2,6-DMP with (left) or without (right) 5 mM CuSO<sub>4</sub>, buffered at pH 8 in 20 mM sodium phosphate. The reaction was catalyzed by adding 30 or 200 nM CopA (without CuSO<sub>4</sub>). The no enzyme control is shown in

### 6. CopA catalyzed lignin transformation

Samples of HP-L<sup>™</sup> were incubated for 3 hours with CopA in the absence and presence of exogenous Cu(II).

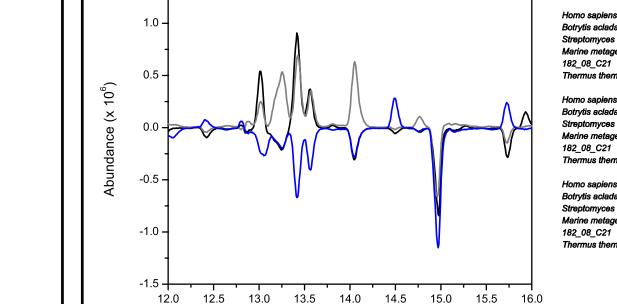
GC-MS analysis revealed the appearance of new peaks, both in the presence and absence of Cu(II), as compared to the controls containing no enzyme (Fig. 11).




#### 2. Enzyme discovery

#### **Database search:**

 Sequenced bacterial genomes – For example, putative lignin modifying enzymes, such as, dye decolorizing peroxidase (DyPs), multi-copper oxidases (MCOs), aryl-alcohol oxidases (AAOs) were identified and are being characterized from *R. jostii* RHA1.


### **High-throughput screening methods:**

- Libraries of clones containing large insert DNA, representing bacterial genome or metagenome, are constructed using an appropriate host (for e.g., *E. coli*).
- Functional screening of libraries to identify clones actively transforming lignin.
- Characterization of clones to identify genes conferring lignin transformation.



# (MCO) from a coal bed metagenome

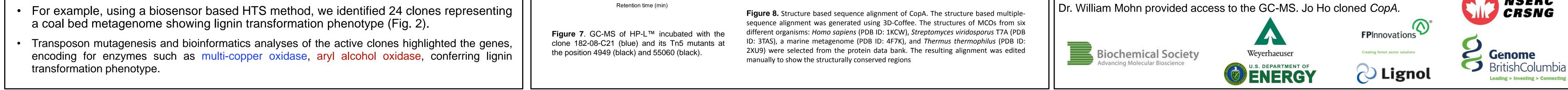
- One of the clones (182-02-C21) that activated the biosensor was subjected to random transposon mutagenesis (Tn5).
- Disruption of one of the genes, encoding for a MCO, reduced the biosensor activation and lignin transformation (Fig. 7).
- The encoded MCO had 80% and 100% amino acid sequence identity with CopA of Pseudomonas putida and P. stutzeri ATCC 14405, bacteria that degrade a range of aromatic compounds.<sup>3,7</sup>
- CopA, a TAT-secreted MCO provides resistance to copper in *P. syringae*, a plant pathogen, and has been described as a pseudo-laccase due to the requirement of exogenous Cu<sup>2+</sup> for oxidase activity.<sup>7</sup>
- Interestingly, *copA*, located at one end of the fosmid clone, encoded protein had an 39-residue C-terminal truncation with respect to the pseudomonad MCO. This included the conserved motif (HCHXXXHXXXM/L/F) required for the binding of type 1 (T1) and type 3 (T3) copper centers (Fig. 8).
- A full-length gene was amplified from the metagenomic DNA used to construct the library and was cloned to produce a poly-histidine tagged protein in *E. coli*.



#### Botrytis aclada (3SQF treptomyces viridosporus Marine metagenome (4) hermus thermophilus (2X\ Homo sapiens (1KCW) Botrytis aclada (3SQR) treptomyces viridosporus T7A (3TA Marine metagenome (4F7K) hermus thermophilus (2XU Homo sapiens (1KCW 8 VIEDGIWHPIHLHGHDFFIVAQETDRRDVAALPGNGYLAIAFKLDNPGSWLLHCHIAWHASEGLAMQFV 2 Botrytis aclada (3SQR HG H R W A D N R T G M L I D N K I C G P A D G F O V I A G E G V G A G A W M Y H C H V O S H S D M G M V G L F L Streptomyces viridosporu I HL HG HHF F E VG A DG N L R D T T L V D A G E T R D I V C V F D N PG NWL L HC HML G HO A A G M K T W V E Marine metagenome (4F7) L HGMWS DLE DE NG N R K HT I D I P P G S K R S Y R V T A D A L G R WAY H C H L L L HMEMGM F R E V R

#### **7.** Summary

13.4


- We identified and characterized two bacterial enzyme, DypB and CopA, that catalyze lignin transformation.
- DypB was the first Dyp-type peroxidase implicated in lignin transformation.
- Engineering of DypB improved its efficiency to transform lignin.
- CopA was identified using a biosensor based HTS method.
- The transformation of lignin and the oxidation of 2,6-DMP by CopA are the first reported oxidase activities for this class of MCOs in the absence of exogenous Cu(II).
- On-going studies are aimed at elucidating the molecular basis for the activity of CopA as well as that of the truncated enzyme in whole cells.

## 8. References

1. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. 2010. *Bioresource technology* **101**, 8915-22. 2.Bugg TD, Ahmad M, Hardiman EM, and Rahmanpour R. 2011. Natural product reports 28, 1883-96. 3.Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, and Bugg TD. 2011. Biochemistry 50, 5096-107. 4.Brown ME, Barros T, Chang MC. 2012. ACS Chem Biol. 7, 2074-2081. 5.Singh R, Grigg JC, Qin W, Kadla JF, Murphy ME, Eltis LD. 2013. ACS Chem Biol. 8, 700-706. 6.Lalucat J, et al. 2006. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70(2):510-47. 7.Cha JS, Cooksey DA 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci USA 88(20):8915-8919

9. Acknowledgements



